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This package provides the basic components for (regularized) empirical risk minization, which is generally formulated
as follows

𝑛∑︁
𝑖=1

𝑙𝑜𝑠𝑠(𝑓(𝑥𝑖; 𝜃), 𝑦𝑖) + 𝑟(𝜃)

As we can see, this formulation involves several components:

• Prediction model: 𝑓(𝑥; 𝜃), which takes an input 𝑥 and a parameter 𝜃 and produces an output (say 𝑢).

• Loss function: 𝑙𝑜𝑠𝑠(𝑢, 𝑦), which compares the predicted output 𝑢 and a desired response 𝑦, and produces a real
value that measuring the loss. Generally, better prediction yields smaller loss.

• Risk model: 𝑙𝑜𝑠𝑠(𝑓(𝑥; 𝜃), 𝑦), the prediction model and the loss together are referred to as the risk model. When
the data x and y are given, the risk model can be considered as a function of theta.

• Regularizer: 𝑟(𝜃) is often introduced to regularize the parameter, which, when used properly, can improve the
numerical stability of the problem and the generalization performance of the estimated model.

This package provides these components, as well as the gradient computation routines and proximal operators, to
support the implementation of various empirical risk minimization algorithms.

All functions in this packages are well optimized and systematically tested.

Contents 1
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CHAPTER 1

Contents:

1.1 Prediction Models

A prediction model 𝑓(𝑥; 𝜃) is a function with two arguments: the input feature 𝑥 and the predictor parameter 𝜃. All
prediction models are instances of an the abstract type PredictionModel, defined as follows:

abstract PredictionModel{NDIn, NDOut}

# NDIn: The number of dimensions of each input (0: scalar, 1: vector, 2: matrix, ...)
# NDOut: The number of dimensions of each output (0: scalar, 1: vector, 2: matrix, ...)

1.1.1 Common Methods

Each prediction model implements the following methods:

inputlen(pm)
Return the length of each input.

inputsize(pm)
Return the size of each input.

outputlen(pm)
Return the length of each output.

outputsize(pm)
Return the size of each output.

paramlen(pm)
Return the length of the parameter.

paramsize(pm)
Return the size of the parameter.

ninputs(pm, x)
Verify the validity of x as a single input or as a batch of inputs. If x is valid, it returns the number of inputs in
array x, otherwise, it raises an error.

predict(pm, theta, x)
Predict the output given the parameter theta and the input x.

Here, x can be either a sample or an array comprised of multiple samples.

3
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1.1.2 Predefined Models

The package provides the following prediction models:

(Univariate) Linear Prediction

𝑓(𝑥; 𝜃) = 𝜃𝑇𝑥

• parameter: 𝜃, a vector of length d.

• input:: 𝑥, a vector of length d.

• output:: a scalar.

immutable LinearPred <: PredictionModel{1,0}
dim::Int

LinearPred(d::Int) = new(d)
end

(Univariate) Affine Prediction

𝑓(𝑥; 𝜃) = 𝑤𝑇𝑥+ 𝑎 · 𝑏

Here, b is a model constant to serve as the base of the bias term.

• parameter: 𝜃, a vector of length d + 1, in the form [w; a].

• input: 𝑥, a vector of length d.

• output:: a scalar.

immutable AffinePred <: PredictionModel{1,0}
dim::Int
bias::Float64

AffinePred(d::Int) = new(d, 1.0)
AffinePred(d::Int, b::Real) = new(d, convert(Float64, b))

end

(Multivariate) Linear Prediction

𝑓(𝑥; 𝜃) = 𝑊 · 𝑥

• parameter: 𝜃 = 𝑊 , a matrix of size (k, d).

• input: 𝑥, a vector of length d.

• output: a vector of length k.

immutable MvLinearPred <: PredictionModel{1,1}
dim::Int
k::Int

MvLinearPred(d::Int, k::Int) = new(d, k)
end

4 Chapter 1. Contents:



EmpiricalRisks Documentation, Release 0.2.3

(Multivariate) Affine Prediction

𝑓(𝑥; 𝜃) = 𝑊 · 𝑥+ 𝑎 · 𝑏

Here, b is a model constant to serve as the base of the bias term.

• parameter: 𝜃, a matrix of size (k, d+1), in the form [W a], where W is a coefficient matrix of size (k,
d) and a is a bias-coefficient vector of size (k,).

• input: 𝑥, a vector of length d.

• output: a vector of length k.

immutable MvAffinePred <: PredictionModel{1,1}
dim::Int
k::Int
bias::Float64

MvAffinePred(d::Int, k::Int) = new(d, k, 1.0)
MvAffinePred(d::Int, k::Int, b::Real) = new(d, k, convert(Float64, b))

end

1.1.3 Examples

Here is an example that illustrates a prediction model.

pm = MvLinearPred(5, 3) # construct a prediction model
# with input dimension 5
# output dimension 3

inputlen(pm) # --> 5
inputsize(pm) # --> (5,)
outputlen(pm) # --> 3
outputsize(pm) # --> (3,)
paramlen(pm) # --> 15
paramsize(pm) # --> (3, 5)

W = randn(3, 5) # W is a parameter matrix
x = randn(3) # x is a single input
ninputs(pm, x) # --> 1
predict(pm, W, x) # make prediction: --> W * x

X = randn(3, 10) # X is a matrix with 10 samples
ninputs(pm, X) # --> 10
predict(pm, W, X) # make predictions: --> W * X

1.2 Loss Functions

Generally, a loss function 𝑙𝑜𝑠𝑠(𝑢, 𝑦) is to measure the loss between the predicted output u and the desired response y.
In this package, all loss functions are instances of the abstract type Loss, defined as below:

# N is the number of dimensions of each predicted output
# 0 - scalar
# 1 - vector
# 2 - matrix, ...

1.2. Loss Functions 5
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#
abstract Loss{N}

typealias UnivariateLoss Loss{0}
typealias MultivariateLoss Loss{1}

1.2.1 Common Methods

Methods for Univariate Loss

Each univariate loss function implements the following methods:

value(loss, u, y)
Compute the loss value, given the predicted output u and the desired response y.

deriv(loss, u, y)
Compute the derivative w.r.t. u.

value_and_deriv(loss, u, y)
Compute both the loss value and derivative (w.r.t. u) at the same time.

Note: This can be more efficient than calling value and deriv respectively, when you need both the value
and derivative.

Methods for Multivariate Loss

Each multivariate loss function implements the following methods:

value(loss, u, y)
Compute the loss value, given the predicted output u and the desired response y.

grad!(loss, g, u, y)
Compute the gradient w.r.t. u, and write the results to g. This function returns g.

Note: g is allowed to be the same as u, in which case, the content of u will be overrided by the derivative
values.

value_and_grad!(loss, g, u, y)
Compute both the loss value and the derivative w.r.t. u at the same time. This function returns (v, g), where
v is the loss value.

Note: g is allowed to be the same as u, in which case, the content of u will be overrided by the derivative
values.

For multivariate loss functions, the package also provides the following two generic functions for convenience.

grad(loss, u, y)
Compute and return the gradient w.r.t. u.

value_and_grad(loss, u, y)
Compute and return both the loss value and the gradient w.r.t. u, and return them as a 2-tuple.

Both grad and value_and_grad are thin wrappers of the type-specific methods grad! and
value_and_grad!.

6 Chapter 1. Contents:
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1.2.2 Predefined Loss Functions

This package provides a collection of loss functions that are commonly used in machine learning practice.

Absolute Loss

The absolute loss, defined below, is often used for real-valued robust regression:

𝑙𝑜𝑠𝑠(𝑢, 𝑦) = |𝑢− 𝑦|

immutable AbsLoss <: UnivariateLoss end

Squared Loss

The squared loss, defined below, is widely used in real-valued regression:

𝑙𝑜𝑠𝑠(𝑢, 𝑦) =
1

2
(𝑢− 𝑦)2

immutable SqrLoss <: UnivariateLoss end

Quantile Loss

The quantile loss, defined below, is used in models for predicting typical values. It can be considered as a skewed
version of the absolute loss.

𝑙𝑜𝑠𝑠(𝑢, 𝑦) =

{︃
𝑡 · (𝑢− 𝑦) (𝑢 ≥ 𝑦)

(1− 𝑡) · (𝑦 − 𝑢) (𝑢 < 𝑦)

immutable QuantileLoss <: UnivariateLoss
t::Float64

function QuantileLoss(t::Real)
...

end
end

Huber Loss

The Huber loss, defined below, is used mostly in real-valued regression, which is a smoothed version of the absolute
loss.

𝑙𝑜𝑠𝑠(𝑢, 𝑦) =

{︃
1
2 (𝑢− 𝑦)2 (|𝑢− 𝑦| ≤ ℎ)

ℎ · |𝑢− 𝑦| − ℎ2

2 (|𝑢− 𝑦| > ℎ)

1.2. Loss Functions 7



EmpiricalRisks Documentation, Release 0.2.3

immutable HuberLoss <: UnivariateLoss
h::Float64

function HuberLoss(h::Real)
...

end
end

Hinge Loss

The hinge loss, defined below, is mainly used for large-margin classification (e.g. SVM).

𝑙𝑜𝑠𝑠(𝑢, 𝑦) = max(1− 𝑦 · 𝑢, 0)

immutable HingeLoss <: UnivariateLoss end

Smoothed Hinge Loss

The smoothed hinge loss, defined below, is a smoothed version of the hinge loss, which is differentiable everywhere.

𝑙𝑜𝑠𝑠(𝑢, 𝑦) =

⎧⎪⎨⎪⎩
0 (𝑦 · 𝑢 > 1 + ℎ)

1− 𝑦 · 𝑢 (𝑦 · 𝑢 < 1− ℎ)
1
4ℎ (1 + ℎ− 𝑦 · 𝑢)2 (otherwise)

immutable SmoothedHingeLoss <: UnivariateLoss
h::Float64

function SmoothedHingeLoss(h::Real)
...

end
end

Logistic Loss

The logistic loss, defined below, is the loss used in the logistic regression.

𝑙𝑜𝑠𝑠(𝑢, 𝑦) = 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(−𝑦 · 𝑢))

immutable LogisticLoss <: UnivariateLoss end

Sum Loss

The package provides the SumLoss type that turns a univariate loss into a multivariate loss. The definition is given
below:

𝑙𝑜𝑠𝑠(𝑢, 𝑦) =

𝑘∑︁
𝑖=1

𝑖𝑛𝑡𝑒𝑟𝑛(𝑢𝑖, 𝑦𝑖)

Here, intern is the internal univariate loss.

8 Chapter 1. Contents:
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immutable SumLoss{L<:UnivariateLoss} <: MultivariateLoss
intern::L

end

SumLoss{L<:UnivariateLoss}(loss::L) = SumLoss{L}(loss)

Moreover, recognizing that sum of squared difference is very widely used. We provide a SumSqrLoss as a typealias
as follows:

typealias SumSqrLoss SumLoss{SqrLoss}
SumSqrLoss() = SumLoss{SqrLoss}(SqrLoss())

Multinomial Logistic Loss

The multinomial logistic loss, defined below, is the loss used in multinomial logistic regression (for multi-way classi-
fication).

𝑙𝑜𝑠𝑠(𝑢, 𝑦) = log

(︃
𝑘∑︁

𝑖=1

exp(𝑢𝑖)

)︃
− 𝑢[𝑦]

Here, y is the index of the correct class.

immutable MultiLogisticLoss <: MultivariateLoss

1.3 Risk Models

The prediction model together with a (compatible) loss function constitutes a risk model, which can be expressed as
𝑙𝑜𝑠𝑠(𝑓(𝑥; 𝜃), 𝑦).

In this package, we use a type SupervisedRiskModel to capture this:

abstract RiskModel

immutable SupervisedRiskModel{PM<:PredictionModel,L<:Loss} <: RiskModel
predmodel::PM
loss::L

end

We also provide a function to construct a risk model:

riskmodel(pm, loss)
Construct a risk model, given the predictio model pm and a loss function loss.

Here, pm and loss need to be compatible, which means that the output of the prediction and the first argument
of the loss function should have the same number of dimensions.

Actually, the definition of riskmodel explicitly enforces this consistency:

riskmodel{N,M}(pm::PredictionModel{N,M}, loss::Loss{M}) =
SupervisedRiskModel{typeof(pm), typeof(loss)}(pm,loss)

Note: We may provide other risk model in addition to supervised risk model in future. Currently, the supervised risk
models, which evaluate the risk by comparing the predictions and the desired responses, are what we focus on.

1.3. Risk Models 9
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1.3.1 Common Methods

When a set of inputs and the corresponding outputs are given, the risk model can be considered as a function of the
parameter 𝜃.

The package provides methods for computing the total risk and the derivative of the total risk w.r.t. the parameter.

value(rmodel, theta, x, y)
Compute the total risk w.r.t. the risk model rmodel, given

•the prediction parameter theta;

•the inputs x; and

•the desired responses y.

Here, x and y can be a single sample or matrices comprised of a set of samples.

Example:

# constructs a risk model, with a linear prediction
# and a squared loss.
#
# risk := (theta'x - y)^2 / 2
#
rmodel = risk_model(LinearPred(5), SqrLoss())

theta = randn(5) # parameter
x = randn(5) # a single input
y = randn() # a single output

risk(rmodel, theta, x, y) # evaluate risk on a single sample (x, y)

X = randn(5, 8) # a matrix of 8 inputs
Y = randn(8) # corresponding outputs

risk(rmodel, theta, X, Y) # evaluate the total risk on (X, Y)

value_and_addgrad!(rmodel, beta, g, alpha, theta, x, y)
Compute the total risk on x and y, and its gradient w.r.t. the parameter theta, and add it to g in the following
manner:

𝑔 ← 𝛽𝑔 + 𝛼∇𝜃Risk(𝑥, 𝑦; 𝜃)

Here, x and y can be a single sample or a set of multiple samples. The function returns both the evaluated value
and g as a 2-tuple.

Note: When beta is zero, the computed gradient (or its scaled version) will be written to g without using the
original data in g (in this case, g need not be initialized).

value_and_grad(rmodel, theta, x, y)
Compute and return the gradient of the total risk on x and y, w.r.t. the parameter g.

This is just a thin wrapper of value_and_addgrad!.

Note that the addgrad! method is provided for risk model with certain combinations of prediction models and loss
functions. Below is a list of combinations that we currently support:

• LinearPred + UnivariateLoss

• AffinePred + UnivariateLoss

10 Chapter 1. Contents:
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• MvLinearPred + MultivariateLoss

• MvAffinePred + MultivariateLoss

If you have a new prediction model that is not defined by the package, you can write your own addgrad! method,
based on the description above.

1.4 Regularizers

Regularization is important, especially when we don’t have a huge amount of training data. Effective regularization
can often substantially improve the generalization performance of the estimated model.

In this package, all regularizers are instances of the abstract type Regularizer.

1.4.1 Common Methods

Each regularizer type implements the following methods:

value(reg, theta)
Evaluate the regularization value at theta and return the value.

value_and_addgrad!(reg, beta, g, alpha, theta)
Compute the regularization value, and its gradient w.r.t. theta and add it to g in the following way:

𝑔 ← 𝛽𝑔 + 𝛼∇𝜃𝑅𝑒𝑔(𝜃)

Note: When beta is zero, the computed gradient (or its scaled version) will be written to g without using the
original data in g (in this case, g need not be initialized).

prox!(reg, r, theta, lambda)
Evaluate the proximal operator, as follows:

𝑟 ← argmin
𝑥

1

2
‖𝑥− 𝜃‖2 + 𝜆 · Reg(𝑥)

This method is needed when proximal methods are used to solve the problem.

In addition, the package also provides a set of generic wrappers to simplify some use cases.

value_and_grad(reg, theta)
Compute and return the regularization value and its gradient w.r.t. theta.

This is a wrapper of value_and_addgrad!.

prox(reg, theta[, lambda])
Evaluate the proximal operator at theta. When lambda is omitted, it is set to 1 by default.

This is a wrapper of prox!.

1.4.2 Predefined Regularizers

The package provides several commonly used regularizers:

1.4. Regularizers 11
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Zero Regularizer

The zero regularizer always yields the zero value, which is mainly used to supply an regularizer argument to functions
to request it (but you do not intend to impose any regularization).

𝑟𝑒𝑔(𝜃) = 0

immutable ZeroReg <: Regularizer end

Squared L2 Regularizer

This is one of the most widely used regularizer in practice.

𝑟𝑒𝑔(𝜃) =
𝑐

2
· ‖𝜃‖22.

immutable SqrL2Reg{T<:FloatingPoint} <: Regularizer
c::T

end

SqrL2Reg{T<:FloatingPoint}(c::T) = SqrL2Reg{T}(c)

L1 Regularizer

This is often used for sparse learning.

𝑟𝑒𝑔(𝜃) = 𝑐 · ‖𝜃‖1

immutable L1Reg{T<:FloatingPoint} <: Regularizer
c::T

end

L1Reg{T<:FloatingPoint}(c::T) = L1Reg{T}(c)

Elastic Regularizer

This is also known as L1/L2 regularizer, which is used in the Elastic Net formulation.

𝑟𝑒𝑔(𝜃) = 𝑐1 · ‖𝜃‖1 +
𝑐2
2
‖𝜃‖22

immutable ElasticReg{T<:FloatingPoint} <: Regularizer
c1::T
c2::T

end

ElasticReg{T<:FloatingPoint}(c1::T, c2::T) = ElasticReg{T}(c1, c2)
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1.5 Auxiliary Utilities

The package also provides other convenience tools.

no_op(...)
This function accepts arbitrary arguments and returns nothing.

It is mainly used as a callback function where you don’t really need to callback to do anything.

shrink(x, t)
Compute the following function:

(𝑥, 𝑡) ↦→

⎧⎪⎨⎪⎩
𝑥− 𝑡 (𝑥 > 𝑡)

0 (|𝑥| ≤ 𝑡)

𝑥+ 𝑡 (𝑥 < −𝑡)

Here, x can be either a scalar or an array (for vectorized computation).

1.5. Auxiliary Utilities 13
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